Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291613

RESUMEN

Glial cells play relevant roles in neuroinflammation caused by epilepsy. Elevated hemichannel (HC) activity formed by connexins (Cxs) or pannexin1 (Panx1) largely explains brain dysfunctions commonly caused by neuroinflammation. Glia express HCs formed by Cxs 43, 30, or 26, while glia and neurons both express HCs formed by Panx1. Cx43 HCs allow for the influx of Ca2+ , which promotes glial reactivity, enabling the release of the gliotransmitters that contribute to neuronal over-stimulation. Valproate (VPA), an antiseizure medication, has pleiotropic actions on neuronal molecular targets, and their action on glial cell HCs remains elusive. We used HeLa cells transfected with Cx43, Cx30, Cx26, or Panx1 to determine the effect of VPA on HC activity in the brain. VPA slightly increased HC activity under basal conditions, but significantly enhanced it in cells pre-exposed to conditions that promoted HC activity. Furthermore, VPA increased ATP release through Cx43 HCs. The increased HC activity caused by VPA was resistant to washout, being consistent with in silico studies, which predicted the binding site for VPA and Cx43, as well as for Panx1 HCs on the intracellular side, suggesting that VPA first enters through HCs, after which their activity increases.

2.
RSC Adv ; 13(43): 30118-30128, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37849708

RESUMEN

In this study, two pyrazolo[3,4-b]pyridine derivatives (4a and 4b) were grown using a slow evaporation solution growth technique and characterized by FT-IR, HRMS, 1H/13C NMR spectroscopy, and X-ray crystallography. The 4a and 4b structures crystallized in monoclinic and triclinic systems with space groups P21/n and P1̄, respectively. Theoretical calculations were performed at the DFT/B3LYP level for the optimized geometries. The results were in excellent agreement with the experimental data (spectroscopic and XRD). This investigation encompasses molecular modeling studies including Hirshfeld surface analysis, energy framework calculations, and frontier molecular orbital analysis. Intermolecular interactions within the crystal structures of the compounds were explored through Hirshfeld surface analysis, which revealed the notable presence of hydrogen bonding and hydrophobic interactions. This insight provides valuable information on the structural stability and potential solubility characteristics of these compounds. The research was extended to docking analysis with eight distinct kinases (BRAF, HER2, CSF1R, MEK2, PDGFRA, JAK, AKT1, and AKT2). The results of this analysis demonstrate that both 4a and 4b interact effectively with the kinase-binding sites through a combination of hydrophobic interactions and hydrogen bonding. Compound 4a had the best affinity for proteins; this is related to the fact that the compound is not rigid and has a small size, allowing it to sit well at any binding site. This study contributes to the advancement of kinase inhibitor research and offers potential avenues for the development of new therapeutic agents for cancer treatment.

3.
Front Chem ; 11: 1245941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663141

RESUMEN

Multicomponent reactions were performed to develop novel α,ß-unsaturated carbonyl depsipeptides and peptoids incorporating various chromophores such as cinnamic, coumarin, and quinolines. Thus, through the Passerini and Ugi multicomponent reactions (P-3CR and U-4CR), we obtained thirteen depsipeptides and peptoids in moderate to high yield following the established protocol and fundamentally varying the electron-rich carboxylic acid as reactants. UV/Vis spectroscopy was utilized to study the photophysical properties of the newly synthesized compounds. Differences between the carbonyl-substituted chromophores cause differences in electron delocalization that can be captured in the spectra. The near UV regions of all the compounds exhibited strong absorption bands. Compounds P2, P5, U2, U5, and U7 displayed absorption bands in the range of 250-350 nm, absorbing radiation in this broad region of the electromagnetic spectrum. A photostability study for U5 showed that its molecular structure does not change after exposure to UV radiation. Fluorescence analysis showed an incipient emission of U5, while U6 showed blue fluorescence under UV radiation. The photophysical properties and electronic structure were also determined by TD-DFT theoretical study.

4.
Front Endocrinol (Lausanne) ; 14: 1192216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455925

RESUMEN

Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Disbiosis , Glándula Tiroides/metabolismo , Ácidos Grasos Volátiles/metabolismo , Intestinos/microbiología
5.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233530

RESUMEN

The origin of life possibly required processes in confined systems that facilitated simple chemical reactions and other more complex reactions impossible to achieve under the condition of infinite dilution. In this context, the self-assembly of micelles or vesicles derived from prebiotic amphiphilic molecules is a cornerstone in the chemical evolution pathway. A prime example of these building blocks is decanoic acid, a short-chain fatty acid capable of self-assembling under ambient conditions. This study explored a simplified system made of decanoic acids under temperatures ranging from 0 °C to 110 °C to replicate prebiotic conditions. The study revealed the first point of aggregation of decanoic acid into vesicles and examined the insertion of a prebiotic-like peptide in a primitive bilayer. The information gathered from this research provides critical insights into molecule interactions with primitive membranes, allowing us to understand the first nanometric compartments needed to trigger further reactions that were essential for the origin of life.

6.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902328

RESUMEN

Direct FXa inhibitors are an important class of bioactive molecules (rivaroxaban, apixaban, edoxaban, and betrixaban) applied for thromboprophylaxis in diverse cardiovascular pathologies. The interaction of active compounds with human serum albumin (HSA), the most abundant protein in blood plasma, is a key research area and provides crucial information about drugs' pharmacokinetics and pharmacodynamic properties. This research focuses on the study of the interactions between HSA and four commercially available direct oral FXa inhibitors, applying methodologies including steady-state and time-resolved fluorescence, isothermal titration calorimetry (ITC), and molecular dynamics. The HSA complexation of FXa inhibitors was found to occur via static quenching, and the complex formation in the ground states affects the fluorescence of HSA, with a moderate binding constant of 104 M-1. However, the ITC studies reported significantly different binding constants (103 M-1) compared with the results obtained through spectrophotometric methods. The suspected binding mode is supported by molecular dynamics simulations, where the predominant interactions were hydrogen bonds and hydrophobic interactions (mainly π-π stacking interactions between the phenyl ring of FXa inhibitors and the indole moiety of Trp214). Finally, the possible implications of the obtained results regarding pathologies such as hypoalbuminemia are briefly discussed.


Asunto(s)
Factor X , Albúmina Sérica Humana , Tromboembolia Venosa , Humanos , Anticoagulantes , Sitios de Unión , Calorimetría/métodos , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Termodinámica , Factor X/antagonistas & inhibidores
7.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232932

RESUMEN

Salicylic acid (SA) is a hormone that modulates plant defenses by inducing changes in gene expression. The mechanisms that control SA accumulation are essential for understanding the defensive process. TGA transcription factors from clade II in Arabidopsis, which include the proteins TGA2, TGA5, and TGA6, are known to be key positive mediators for the transcription of genes such as PR-1 that are induced by SA application. However, unexpectedly, stress conditions that induce SA accumulation, such as infection with the avirulent pathogen P. syringae DC3000/AvrRPM1 and UV-C irradiation, result in enhanced PR-1 induction in plants lacking the clade II TGAs (tga256 plants). Increased PR-1 induction was accompanied by enhanced isochorismate synthase-dependent SA production as well as the upregulation of several genes involved in the hormone's accumulation. In response to avirulent P. syringae, PR-1 was previously shown to be controlled by both SA-dependent and -independent pathways. Therefore, the enhanced induction of PR-1 (and other defense genes) and accumulation of SA in the tga256 mutant plants is consistent with the clade II TGA factors providing negative feedback regulation of the SA-dependent and/or -independent pathways. Together, our results indicate that the TGA transcription factors from clade II negatively control SA accumulation under stress conditions that induce the hormone production. Our study describes a mechanism involving old actors playing new roles in regulating SA homeostasis under stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Mutación , Enfermedades de las Plantas/genética , Pseudomonas syringae , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Arch Pharm (Weinheim) ; 355(11): e2200142, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35892245

RESUMEN

Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 ± 8.97 and 59.23 ± 5.31 µM, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.


Asunto(s)
Enfermedad de Alzheimer , Plaguicidas , Humanos , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Plaguicidas/farmacología
9.
Bioorg Chem ; 126: 105914, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35649316

RESUMEN

The skin and soft tissue infections (SSTIs) -producing pathogens have acquired resistance to a wide range of antimicrobials, thus it is highly relevant to have new treatment alternatives. In this study, we report the synthesis, characterization, and antibacterial activity of three novel series of ionic liquids (ILs) derived from benzoic and hydroxybenzoic acids, with different lengths of the alkyl chain. The minimum inhibitory concentration (MIC) were tested in Gram-positive: Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes, and Gram-negative: Acinetobacter baumannii and Escherichia coli, showing a MIC range of 0.01562-2.0 mM, with the activity varying according to the aromatic ring functionalization and the length of the alkyl chains. Regarding the antibiofilm activity, different efficacy was observed among the different ILs, some of them presenting antibiofilm activities close to 80% as in the case of those derived from syringic acid with an alkyl chain of six carbon atoms against Pseudomonas aeruginosa. Furthermore, the cell viability in HaCaT cells was determined, showing a half maximal effective concentration (EC50) values higher than the MIC values. The antimicrobial and antibiofilm results, along with not producing cellular toxicity at the MIC values shows that these ILs could be a promising alternative against SSTIs.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Infecciones de los Tejidos Blandos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Biopelículas , Escherichia coli , Humanos , Hidroxibenzoatos/farmacología , Líquidos Iónicos/farmacología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
10.
Proc Natl Acad Sci U S A ; 119(18): e2202104119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486697

RESUMEN

The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell­cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell­cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell­cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell­cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell­cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell­cell channels in different cell types might require special attention.


Asunto(s)
Conexinas , Proteínas del Tejido Nervioso , Animales , Conexinas/metabolismo , Humanos , Canales Iónicos , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
11.
Br J Pharmacol ; 179(14): 3576-3591, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-32959389

RESUMEN

BACKGROUND AND PURPOSE: The transient receptor potential vanilloid 4 (TRPV4) cation channel participates in multiple physiological processes and is also at the core of different diseases, making this channel an interesting pharmacological target with therapeutic potential. However, little is known about the structural elements governing its inhibition. EXPERIMENTAL APPROACH: We have now combined in silico drug discovery and molecular dynamics simulation based on Xenopus tropicalis xTRPV4 structure with functional studies measuring cell Ca2+ influx mediated by human TRPV4 channel to characterize the binding site of known TRPV4 inhibitors and to identify novel small molecule channel modulators. KEY RESULTS: We have found that the inhibitor HC067047 binds to a pocket conformed by residues from S2-S3 linker (xTRPV4-D542), S4 (xTRPV4-M583 and Y587 and S5 (xTRPV4-D609 and F613). This pocket was also used for structure-based virtual screening in the search of novel channel modulators. Forty potential hits were selected based on the lower docking scores (from ~250,000 compounds) and their effect upon TRPV4 functionally tested. Three were further analysed for stability using molecular dynamics simulation and functionally tested on TRPV4 channels carrying mutations in the binding pocket. Compound NSC151066, shown to require residue xTRPV4-M583 for its inhibitory effect, presented an IC50 of 145 nM and demonstrated to be an effective antiviral against Zika virus with a potency similar to HC067047. CONCLUSION AND IMPLICATIONS: Together, we propose structural insights into the inhibition of TRPV4 and how this information can be used for the design of novel channel modulators. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Infección por el Virus Zika , Virus Zika , Animales , Antivirales/farmacología , Sitios de Unión , Humanos , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Xenopus/metabolismo , Virus Zika/metabolismo
12.
Pharmacol Ther ; 231: 107980, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34481811

RESUMEN

Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.


Asunto(s)
Epilepsia , Canales de Potencial de Receptor Transitorio , Conexinas/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Humanos , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
13.
J Cell Physiol ; 237(2): 1547-1560, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34779505

RESUMEN

Large-pore channels, including those formed by connexin, pannexin, innexin proteins, are part of a broad family of plasma membrane channels found in vertebrates and invertebrates, which share topology features. Despite their relevance in parasitic diseases such as Chagas and malaria, it was unknown whether these large-pore channels are present in unicellular organisms. We identified 14 putative proteins in Trypanosomatidae parasites as presumptive homologs of innexin proteins. All proteins possess the canonical motif of the innexin family, a pentapeptide YYQWV, and 10 of them share a classical membrane topology of large-pore channels. A sequence similarity network analysis confirmed their closeness to innexin proteins. A bioinformatic model showed that a homolog of Trypanosoma cruzi (T. cruzi) could presumptively form a stable octamer channel with a highly positive electrostatic potential in the internal cavities and extracellular entrance due to the notable predominance of residues such as Arg or Lys. In vitro dye uptake assays showed that divalent cations-free solution increases YO-PRO-1 uptake and hyperosmotic stress increases DAPI uptake in epimastigotes of T. cruzi. Those effects were sensitive to probenecid. Furthermore, probenecid reduced the proliferation and transformation of T. cruzi. Moreover, probenecid or carbenoxolone increased the parasite sensitivity to antiparasitic drugs commonly used in therapy against Chagas. Our study suggests the existence of innexin homologs in unicellular organisms, which could be protein subunits of new large-pore channels in unicellular organisms.


Asunto(s)
Parásitos , Trypanosoma cruzi , Trypanosomatina , Animales , Conexinas/metabolismo , Parásitos/metabolismo , Probenecid/farmacología , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Trypanosomatina/metabolismo
14.
Bioorg Chem ; 115: 105289, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426154

RESUMEN

Bacterial infections are nowadays among the major threats to public health worldwide. Thus, there is an urgent and increased need for new antimicrobial agents. As a result, the exploration of the antimicrobial properties of different substances including ionic liquids (ILs) has recently attracted great attention. The present work is aimed at evaluating how the addition of halogens and hydrophobic substituents on alkylimidazolium units of ILs as well as the increase in their chain lengths affects the antimicrobial properties of such ILs. After their synthesis, the antibacterial activities of these compounds against Pseudomona aeruginosa, Escherichia coli, and Staphylococcus aureus are determined by measuring their minimal inhibitory concentrations (MICs). Key features in ILs-membrane interactions are also studied using long-term all-atom molecular dynamics simulations (MDs). The results show that these ILs have good antibacterial activity against S. aureus, E. coli, and P. aeruginosa, with MIC values range from <7.81 to 62.50 µM. The antimicrobial property of tert-butyl N-methylphenolimidazolium salts (denoted as 8b and 8c) is particularly better with MIC values of < 7.81 µM. The antibacterial efficacy is also found to depend on the alkyl chain length and substituents on the phenolic ring. Finally, MDs done for ILs in a phosphatidylcholine (POPC) bilayer show key features in the mechanism of IL-induced membrane disruption, where the ILs are inserted as clusters into one side of the bilayer until saturation is reached. This insertion increases "leaflet strain" up to critical threshold, likely triggering the morphological disruption of the membranes in the microbes.


Asunto(s)
Antibacterianos/farmacología , Imidazoles/farmacología , Líquidos Iónicos/farmacología , Fenoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Cationes/química , Cationes/farmacología , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Imidazoles/química , Líquidos Iónicos/síntesis química , Líquidos Iónicos/química , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Fenoles/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
15.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34301850

RESUMEN

Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.


Asunto(s)
Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Conexinas/genética , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Indoles/farmacocinética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Fosforilación , Serina/genética , Serina/metabolismo
16.
Drug Deliv ; 28(1): 1020-1030, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34060399

RESUMEN

NOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.


Asunto(s)
Ácido Diaminopimélico/análogos & derivados , Nanopartículas/química , Proteína Adaptadora de Señalización NOD1/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Ácido Diaminopimélico/administración & dosificación , Ácido Diaminopimélico/farmacología , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Liberación de Fármacos , Estabilidad de Medicamentos , Ratones , Poliésteres/química , Células RAW 264.7
17.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166188, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102257

RESUMEN

The proteins connexins, innexins, and pannexins are the subunits of non-selective channels present in the cell membrane in vertebrates (connexins and pannexins) and invertebrates (innexins). These channels allow the transfer of ions and molecules across the cell membrane or, and in many cases, between the cytoplasm of neighboring cells. These channels participate in various physiological processes, particularly under pathophysiological conditions, such as bacterial, viral, and parasitic infections. Interestingly, some anti-parasitic drugs also block connexin- or pannexin-formed channels. Their effects on host channels permeable to molecules that favor parasitic infection can further explain the anti-parasitic effects of some of these compounds. In this review, the effects of drugs with known anti-parasitic activity that modulate non-selective channels formed by connexins or pannexins are discussed. Previous studies that have reported the presence of these proteins in worms, ectoparasites, and protozoa that cause parasitic infections have also been reviewed.


Asunto(s)
Antiparasitarios/farmacología , Conexinas/metabolismo , Parásitos/efectos de los fármacos , Animales , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos , Parásitos/metabolismo
18.
Molecules ; 26(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668529

RESUMEN

Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non-competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by interacting within the ion-channel. We applied electrophysiological (recording of the ion current elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics simulations, and binding free energy calculations). The antidepressants inhibited ICh with the order: norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and the channel pore is highly negatively charged, which facilitates the permeation of cations and the entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics simulations were carried out within the ion-channel of the α7 nAChR, revealing that the antidepressants adopt poses along the receptor channel, with slightly different binding-free energy values. Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants interacting in the ion-channel.


Asunto(s)
Antidepresivos/química , Antidepresivos/farmacología , Canales Iónicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Antidepresivos/clasificación , Colina/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ratas , Homología Estructural de Proteína , Relación Estructura-Actividad , Termodinámica
19.
Pharmaceutics ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35056929

RESUMEN

Green chemistry implementation has led to promising results in waste reduction in the pharmaceutical industry. However, the early sustainable development of pharmaceutically active compounds and ingredients remains a considerable challenge. Herein, we wish to report a green synthesis of new pharmaceutically active peptide triazoles as potent factor Xa inhibitors, an important drug target associated with the treatment of diverse cardiovascular diseases. The new inhibitors were synthesized in three steps, featuring cycloaddition reactions (high atom economy), microwave-assisted organic synthesis (energy efficiency), and copper nanoparticle catalysis, thus featuring Earth-abundant metals. The molecules obtained showed FXa inhibition, with IC50-values as low as 17.2 µM and no associated cytotoxicity in HEK293 and HeLa cells. These results showcase the environmental potential and chemical implications of the applied methodologies for the development of new molecules with pharmacological potential.

20.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276429

RESUMEN

Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity-measured by changes in DAPI uptake-of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water-lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.


Asunto(s)
Conexinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación del Canal Iónico , Mecanotransducción Celular , Proteínas del Tejido Nervioso/metabolismo , Conexinas/química , Conexinas/genética , Proteínas Quinasas Dependientes de AMP Cíclico/química , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fosforilación , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...